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Abstract
The diffusion and low frequency vibrational motions of atoms and molecules
on surfaces can be measured by means of quasielastic helium atom scattering.
In this paper, we discuss and investigate different analytical approximations,
based on the theory of stochastic processes, to the dynamic structure factor,
considering the two motions on an equal footing. Special emphasis is put
on the nature of the corresponding lineshapes, explained in terms of the
motional narrowing effect. We also discuss the influence of the diffusional
and vibrational coupling and several ways of experimentally separating the two
types of contributions to the dynamic structure factor. In particular, we propose
that the so-called inelastic focusing singularity from atom–surface scattering
controls the lineshapes of quasielastic and vibrational peaks.

1. Introduction

Diffusional and vibrational motions of adsorbates on surfaces are two elementary dynamical
processes which are of paramount importance in surface physics. The quasielastic helium atom
scattering (QHAS) technique has revealed itself as an alternative and very convenient tool for
analysing both diffusion [1–5] and low frequency vibrations [6–9] of adsorbates on surfaces.
From time-of-flight measurements, converted to an energy transfer scale, a wide energy range
can be spanned and several peaks are easily observed. First, a prominent peak around zero
energy transfer, known as the quasielastic peak (Q-peak), gives us information about the
diffusion motion. Second, some peaks, due to energy exchange with surface phonons such
as the Rayleigh wave (RW) and the longitudinal resonance (LR), provide information about
inelastic scattering with the surface. And third, additional weaker peaks at low energy transfers
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(creation and annihilation processes) are attributed to frustrated translations of adsorbates
parallel to the surface (T-modes). Theoretically, the corresponding lineshapes of the Q- and
T-peaks are given by the dynamic structure factor S(K, ω), which is defined as the space–
time Fourier transform of the van Hove distribution function G(R, t) [10, 11]. At low
adatom concentrations, interactions between adsorbates can be ignored, and G(R, t) gives
the probability of finding a single adatom at the lattice position R at time t , given that it was
at the origin at some arbitrary time t = 0.

In order to extract useful information about the adsorbate dynamics (diffusion mechanisms
and coefficients, jump distributions or vibrational frequencies) as well as details of the
adsorbate–surface interaction (diffusion barriers, friction constants or adiabatic atom–surface
potentials), some approximate theory is needed relating the dynamic structure factor to relevant
physical parameters. Traditionally two simple models have been used to obtain information
about the diffusional dynamics: at small wavevector transfers (probing large distances) the
potential structure plays almost no role and the adsorbate is modelled as a particle subject
to thermal noise and dissipation; that is, as a Gaussian stochastic process whose probability
density is the solution of the standard diffusion equation. From this model the diffusion
coefficient can be inferred, as briefly explained below. In contrast, at larger wavevector
transfers, the potential structure plays an important role and it is usually taken into account by
assuming discrete instantaneous jumps between different sites on the surface (the Chudley–
Elliot model [12]). Within this model, jump distributions can be easily calculated. In both
cases, the Q-peak lineshape is a Lorentzian profile. On the other hand, the T-mode peak,
with the surface temperature, shows an approximately linear shift and broadening which have
been explained assuming transitions from a Boltzmann population of vibrational levels of
an anharmonic oscillator [6]. This provides information about the curvature of the adiabatic
interaction potential and the friction coefficient when extrapolated to zero temperature. Again,
the lineshape of the peak has been assumed to be Lorentzian. In any case, a detailed analysis
of the different lineshapes for the Q- and T-peaks is still lacking in the literature.

Diffusion and low frequency vibration motions are governed by different length scales and
timescales and this is why most of the time they are treated separately. However, it is known
that they become coupled when the scaled surface temperature kT is similar to or higher than
the diffusion barrier height and the wavevector transfer of the probe particles is large [13, 14].
As far as we know, the first attempt to consider the two kinds of motions on equal footing is
due to Chen and Ying [13] who used a microscopic theory based on Mori’s projection operator
formalism [15]. Alternative stochastic theories within the Fokker–Planck formalism [16] or
the equivalent Langevin formalism [17, 18] have been successfully applied to interpret QHAS
experiments classically [2, 3, 8, 13, 14, 19, 20] or quantum mechanically [21]. Both motions
are therefore considered as stochastic processes although their dynamics are determined by
different parts of the interaction potential.

In this paper we discuss in some detail the relevant physical parameters governing the
adsorbate dynamics (both diffusional and vibrational) and how they can be related to observable
features such as lineshapes and different sources of broadening by using simple stochastic
theories. In particular, we will show that the corresponding lineshapes are governed by the
motional narrowing [22] effect first observed in the stochastic nuclear magnetic resonance
lineshapes [23]. Moreover, we also propose an experimental way to separate the two kinds of
motion by means of an adequate manipulation of the initial conditions of the atomic beam. This
is the so-called focusing effect and its implication in diffusion and vibrational low frequency
mode spectroscopy has not been investigated yet. Focusing processes have been extensively
exploited in continuum state surface scattering [24], elastic and inelastic selective adsorption
resonances [25] and sticking problems [26].
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2. Diffusion lineshapes

It is convenient to express the dynamic structure factor directly in terms of the intermediate
scattering function I (K, t) [27], the space Fourier transform of the van Hove correlation
function, as

S(K, ω) =
∫ ∞

−∞
e−iωt I (K, t) dt . (1)

The function I (K, t) can be considered as the characteristic function of the stochastic process
R(t):

I (K, t) = 〈e−iK[R(t)−R(0)]〉 = 〈e−iK
∫ t

0 vK(t ′) dt ′ 〉 (2)

where vK is the velocity of the adparticle projected along the wavevector transfer K direction.
A cumulant expansion to second order yields the standard result [28]

I (K, t) ∼ e− K2

2

∫ t
0 dt ′ ∫ t

0 dt ′′〈vK(t ′)vK(t ′′)〉 = e−K2
∫ t

0 (t−t ′)ψ(t ′) dt ′
(3)

where ψ(t) ≡ 〈vK(t)vK(0)〉 is the velocity autocorrelation function. The first approximation
comes from the truncation of the cumulant series, and the second equality holds if the velocity
process vK(t) is stationary. For Gaussian stochastic processes, as when the thermal noise is
Gaussian white noise and there is no interaction potential or it is quadratic, equation (3) is
exact.

If a stochastic process is Gaussian and Markovian, Doob’s theorem states that its
correlation function decays in time exponentially. If we assume simply

ψ(t) = 〈v2
K〉e−t/τc (4)

with τc the (normalized) correlation time for the adparticle velocity,

τc ≡ 1

〈v2
K〉

∫ ∞

0
〈vK(t)vK(0)〉 dt, (5)

the intermediate scattering function can be expressed now as [28]

I (K, t) = exp

[
−χ2

(
e−t/τc +

t

τc
− 1

)]
(6)

with

χ = τc

√
〈v2

K〉|K| = D|K|√
〈v2

K〉
≡ l̄|K| (7)

where l̄ is the mean free path and

D = τc〈v2
K〉 (8)

is the diffusion coefficient. Note that, for a particle with no adiabatic interaction potential
and under thermal noise and dissipation, τc = 1/γ [29] where γ is the friction coefficient. In
general, equation (8) combined with (5) is the Green–Kubo relation for the diffusion coefficient
and therefore, under the Gaussian approximation, the intermediate scattering function contains
the exact diffusion coefficient through the parameter χ . This parameter will govern the
dynamical coherence of the diffusion process and thus the lineshape of the Q-peak. In the
limit χ → ∞ or, equivalently, τc → ∞ or l̄ → ∞, we obtain a Gaussian function (short time
approximation, t � τc)

I (K, t) ∝ e−D|K|2 t2/2τc (9)
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and the corresponding dynamic structure factor has a Gaussian shape

S(K, ω) ∝ 1

|K|v0
exp[−ω2/2|K|2v2

0 ] (10)

with the isotropic mean velocity v0 =
√

〈v2
K〉 = √

D/τc. The corresponding full width at
half-maximum (FWHM) is linearly dependent on the wavevector transfer and v0, � ∝ v0|K|.
The physical meaning of this result is clear. The corresponding van Hove function is of the
form

G(R, t) ∝ 1

(v0t)2
exp[−R2/(t2v2

0)] (11)

which is interpreted as the probability for the particle to be displaced by R in a time t assuming
a constant velocity R/t and an initial Maxwell–Boltzmann distribution of velocities, with
v0 = √

kBT/m (two degrees of freedom). This means that for times much shorter than the
mean collision time the particle behaves as almost free and dynamical coherence dominates,
that is, particles keep a memory of their velocity and variations of probability take place
over distances smaller than the mean free path. This behaviour has been found in QHAS
experiments of Xe adsorbates on a Pt(111) surface [30], providing evidence for a fully mobile
two-dimensional gas of Xe atoms.

In the opposite case, χ � 1, we have the long time approximation (t � τc in equation (6)),

I (K, t) ∝ e−K2 Dt , (12)

and the spectrum has the Lorentzian shape

S(K, ω) ∝ |K|2 D

ω2 + |K|4 D2
. (13)

Here correlations between different velocities are completely lost and the process is purely
diffusive. The FWHM is � = 2DK2.

The exact Fourier transform of equation (6) for all ranges of time can be expressed in
terms of the complete and incomplete gamma functions as

S(K, ω) = eχ
2
τc

π
χ−2χ2

Re χ−i2ωτc [�(χ2 + iωτc)− �(χ2 + iωτc, χ
2)]

= eχ
2

2π

∞∑
n=0

(−1)nχ2n

n!

2[(χ2 + n)/τc]

ω2 + [(χ2 + n)/τc]2
. (14)

As the value of the parameterχ decreases, the dynamic structure factor goes from a nearly
Gaussian to a Lorentzian lineshape and the spectrum becomes narrower and narrower. This
general effect is called motional narrowing [22]. Not only can the spectrum as a whole be
approximated by one of those shapes depending on the value of χ , but, by the general property
of the Fourier transform, we see that around ω = 0 the behaviour of S(K, ω) is governed
by the behaviour of the intermediate scattering function at large t and, for large ω, by the
corresponding behaviour at small t . Therefore, the shape of the quasielastic peak at the centre
will be close to Lorentzian while the wings are close to a Gaussian form. Moreover, from
the second expression in equation (14), it is clearly seen that an infinite number of Lorentzian
shapes are contributing to the Q-peak, each of them with a width proportional to the diffusion
coefficient D plus a contribution increasing linearly with n. Obviously, equation (13) is
obtained from equation (14) if only the first term of the series is considered.

This motional narrowing effect is illustrated in figure 1. Here we plot the dynamic structure
factor for a particle with no adiabatic interaction potential (white circles) and the theoretical
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Figure 1. Numerical (white circles) and theoretical (equation (14); solid curves) dynamic structure
factors when no interaction potential is considered, at T = 200 K and different wavevector transfers:
upper panel, K = 0.11 Å−1; lower panel, K = 1.23 Å−1. The values of χ = 0.33 and 3.67 show
a Lorentzian and Gaussian lineshape, respectively. In the insets, the corresponding intermediate
scattering functions are also plotted.

prediction (solid curves, given by equation (14)) at T = 200 K and two different K values,
0.11 and 1.23 Å−1. The parameter χ defined by equation (7) takes the values 0.33 and 3.67,
respectively, showing a clear transition between a Lorentzian and a Gaussian profile. Notice
also that the FWHM of the Q-peak is almost one order of magnitude smaller in the Lorentzian
case. In the insets, the corresponding intermediate scattering functions are also plotted.

An important point is determining the range of K values for which the Gaussian
approximation, equation (3), is valid for the intermediate scattering function in a realistic
surface diffusion system. It is well known that at large wavevector transfers the behaviour of
the FWHM is not quadratic in K as in equation (13), since the structure of the surface has to
be taken into account and the Gaussian approximation fails. The simplest model including the
periodicity of the surface is due to Chudley and Elliot [12] who proposed a master equation for
the van Hove function assuming instantaneous discrete jumps on a two-dimensional Bravais
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lattice. This gives again an exponential for the intermediate scattering function

I (K, t) = I (K, 0)e−t/τ1(K) (15)

where the correlation time τ1(K) has a periodic dependence in K of the form

τ−1
1 (K) = ν

∑
j

Pj[1 − cos(j · K)], (16)

ν being the total rate of jumps out of an adsorption site and Pj the relative probability for a
jump with a displacement vector j. For small K values, and considering uncorrelated jumps
in the parallel directions, we see that

τ−1
1 (Kx,y) ∼ ν

2

∑
j

Pj j 2 K 2
x,y = ν

2
〈 j 2〉K 2

x,y (17)

where Pj is now the probability of jumping over j lattice sites in a single jump along the x or
y direction and Kx,y is the wavevector transfer in this direction. From the expression for the
diffusion coefficient within the jump diffusion model [31],

D = ν

2
〈 j 2〉, (18)

we recover the Lorentzian approximation in the long time limit, equation (13).
In order to illustrate the preceding discussion, we choose a prototype model for atom–

surface diffusion: Na adatoms at low coverages on a symmetric Cu(100) surface. This model
has been investigated exhaustively both experimentally [1–4] and theoretically [1, 3, 13, 14, 19]
using different approaches. From numerical simulations and extensive fitting to experiments,
an accurate two-dimensional potential energy surface (PES) has been proposed in [2, 3]. The
important PES parameters for our discussion of this system are the barrier height for diffusion,
V ‡ = 75 meV along x or y directions, and the T-mode peak position extrapolated to zero
temperature,ω0 = 6 meV (which is consistent with the theoretical value of the well frequency
ω0 = 2π

√
V ‡/2ma2, where m is the particle mass and a the unit cell length). The friction

coefficient has been also estimated from extrapolation of the T-peak width and comparison
between experiment and Langevin simulations, giving γ = 0.1ω0. We take this PES and
these parameter values as our starting point for numerical simulations, solving the Langevin
equation

R̈ = −∇V (R)
m

− γ Ṙ + Fr(t) (19)

by a third-order velocity Verlet algorithm [32].
The relevant correlation functions are determined by averaging over appropriate ensembles

of trajectories. As a first comparison, in figure 2 we show the FWHM predicted by equation (13)
versus the width obtained by a Lorentzian fit of the numerical dynamic structure factor at
T = 150 K. First, we note that for the whole temperature range spanned experimentally
(50 < T < 350 K) the values of the parameter χ in equation (7) are such that the Lorentzian
shape remains a very good approximation. Secondly, only for K < 0.15 Å−1 is the Gaussian
approximation accurate for diffusion. The Chudley–Elliot model, however, gives a good fit of
the FWHM of the Q-peak as a function of K for the whole region except at values close to the
first Brillouin zone border, where diffusion and vibration start overlapping significantly [14].

Note that equation (16) is in fact a cosine Fourier series, so that using the inversion
formula for the Fourier coefficients, the total jump rate and jump distributions along specific
parallel directions can be obtained from the FWHM, assuming a Lorentzian shape for the
Q-peak. In practice one has two sources of error in this procedure: first, the instantaneous
jump picture is a good approximation only for barriers V ‡/kT � 3 [16, 14]; second, and more
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Figure 2. The full width at half-maximum (FWHM) of the Q-peak at T = 150 K as a function of
the wavevector transfer for the Na/Cu(110) system (see the text). Full circles: Lorentzian fitting
to a numerical Langevin simulation. The prediction of the Chudley–Elliot model, equations (15)
and (16), is plotted with a dashed line. Solid curve: the FWHM of the Gaussian approximation,
equation (13), with the numerically calculated diffusion coefficient.

importantly, the FWHM is not really a periodic function of K whose period is a reciprocal
lattice vector [1, 3]. This is due to the fact that at large values of the wavevector transfer
the contribution of the vibrational T-mode to the quasielastic peak width is appreciable, and
diffusional and vibrational motions cannot be separated. Recently, we have shown [14] that in
fact jump rates and distributions can be calculated analytically to a very good approximation
(again, for barriers V ‡/kT � 3) by using Kramers’ turnover theory generalized to periodic
potentials [33]. Kramers’ approach has the advantage that the FWHM within the Chudley–
Elliot model can be estimated using only two physical parameters: an effective jump frequency
and the energy loss of the particle to the bath as it traverses from one barrier to the next.
These two parameters will determine the whole diffusion process if diffusion is activated and
not strongly coupled to vibration. Moreover, these two parameters are easily related to the
curvature of the potential energy at the barrier and the friction coefficient, and therefore one
can easily estimate barrier heights and friction constants from a fitting to the experiment by
means of the generalized Kramers’ model [14].

3. Low vibration lineshapes

The Gaussian approximation to the intermediate scattering function, equation (3), can also
be the starting point for an analytical investigation of the T-mode peak. Now, the important
adsorbate dynamics takes place close to the bottom of the potential well and this can be
expanded in a Taylor series in R. Retaining only the first term we have a parabolic potential
and equation (3) is exact. The velocity autocorrelation function for the harmonic oscillator has
the form [34]

ψ(t) = 〈v2
K〉e− γ

2 t

[
cos (ω1t)− γ

2ω1
sin (ω1t)

]
. (20)
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(compare to equation (4)), where

ω1 ≡
√
ω2

0 − γ 2

4
(21)

and γ is the friction coefficient. The dynamic structure factor can be expressed analytically
now, Fourier transforming equation (3) combined with equation (20), as

S(K , ω)  e−2W
∞∑
j=1

2 j W j

( j − 1)!

(
γ

(ω + ω1 j)2 + γ 2 j 2/4
+

γ

(ω − ω1 j)2 + γ 2 j 2/4

)
(22)

where 2W ≡ 〈v2
K〉K2

ω2
0

is the Debye–Waller attenuation factor. Equation (22) gives a series of

Lorentzians centred at the frequencies ±ω1 and their harmonics, with decreasing intensities
(typically only the first term of the series, j = 1, contributes to the lineshape observed
experimentally). The width of the first peak is the friction coefficient γ . Note also that
the peak is not centred at the oscillator frequencyω0 but at ω1; this is due to the coupling to the
bath. Moreover, the K dependence enters only through the intensity of the peak by means of
the overall attenuation factor, and the T-mode shape is not affected by the wavevector transfer
(it is dispersionless) as seen also in QHAS experiments.

Experimentally, the value of the friction coefficient is usually estimated by extrapolation
of the width of the T-mode peak to zero temperature, a procedure which is justified by
equation (22). When temperature increases, a shift and broadening of the T-mode peak is
usually observed, and this can be explained by the anharmonicity of the potential [6]. Recently,
we have proposed analytical formulae for the shift and broadening of the T-mode peak, as well
as for its anharmonic lineshapes [19], using as a starting point equation (3) and calculating
the velocity correlation function ψ(t) by means of a series expansion in the anharmonicity
parameter (the next non-zero term in the Taylor expansion of the adiabatic potential around
the well minimum). In this way, the experimental shift and broadening can be easily related to
the curvature of the adiabatic potential close to the bottom of the potential well. To first order
in this curvature, the shift has been shown to be linear with temperature, while to obtain the
linear temperature dependence of the broadening one has to go up to second order [19]. The
Gaussian approximation is also a very good one for the T-mode peak, opposite to the Q-peak
case.

Interestingly, the lineshapes for the T-mode peak can also show a motional narrowing effect
similar to the one predicted for the Q-peak in the Gaussian approximation. First we expand
the second identity in equation (2) in moments, instead of cumulants, and keep to second
order (which is equivalent to a second-order Taylor expansion of equation (3) around K = 0).
Thus the intermediate scattering function is now proportional to the position autocorrelation
function. This scattering function can be calculated by assuming a Kubo oscillator model [28]
in which the harmonic frequency ω1 is perturbed by a random frequency including the effect
of the anharmonicity. Then one can show [19] that, at long times,

I (K , t) ∝ Re ei(ω1+	ω1)t e−γ t/2e−σ 2 t2

2 (23)

where

σ = 6|K4|〈v2
K〉

ω1ω
2
0

= ω2
0kT

2V ‡ω1m
. (24)

K4 is the anharmonicity parameter depending on the curvature at the well minimum, and the
second equality holds for a 1D cosine potential. When Fourier transforming in time, the first
(complex) exponential in equation (23) gives the peak position, with the shift	ω1 to first order
in K4 [19]. The real exponentials are responsible for the shape and width of the T-mode peak.
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Figure 3. The numerical dynamic structure factor (circles) of the Na/Cu(100) system showing the T-
peak lineshape at different temperatures. The solid curves show the Gaussian limit of equation (23)
and the dotted ones the Lorentzian limit of this equation.

As seen from equation (23) the motional narrowing is now governed mainly by the parameter
σ . If σ � 1 (or V ‡/kT � 1, see equation (24)), the first exponent dominates; the peak has a
Lorentzian shape with the FWHM given mainly by γ , as in the harmonic oscillator case. This
is easily understood since at high barriers or low temperatures the particle motion is restricted
to the vicinity of the potential minimum and the harmonic approximation is a good one. If
σ � 1, or V ‡/kT � 1, the Gaussian contribution dominates and the peak has a Gaussian
shape with a FWHM mainly given by σ . At intermediate values of σ both contributions have
to be taken into account, the central part of the T-mode peak being closer to a Lorentzian while
the wings are better approximated to a Gaussian shape.

In figure 3 we show this behaviour for the T-mode peak of the Na/Cu(110) system
investigated here. The Fourier transform of the whole intermediate scattering function
equation (23), not shown here, reproduces properly the numerical T-mode shape shown with
white circles. The dotted curve is the Lorentzian approximation and the solid curve the
Gaussian one, taken as limits in equation (23). At higher temperatures the right part of the
peak (the one unaffected by overlapping with the Q-peak) is seen to be better approximated
by a Gaussian profile, while at low temperatures the Lorentzian is clearly dominant.

4. Mixed diffusion and low vibration lineshapes

A procedure for understanding better some features of the vibrational–diffusional coupling in
the adsorbate dynamics consists in assuming a simple model for the velocity autocorrelation
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Figure 4. The numerical velocity autocorrelation function for the Na/Cu(100) system at two
different temperatures. Dotted curve: T = 50 K. Solid curve: T = 150 K. The dashed curve is a
best fit to the ansatz equation (25) at T = 150 K.

function:

ψ(t) = 〈u2
K〉 cos(ω2t + δ)e−t/τ2 (25)

where ω2 gives the T-mode peak position (including the temperature dependent shift) and
τ2 is an overall correlation time. At high temperatures, diffusion is predominant and
τ2 is approximately the diffusion coefficient divided by the scaled temperature kT (see
equations (4) and (8)). At low temperatures (for the system studied here, with a diffusion
barrier V ‡ = 75 meV, we have T < 50 K), jumps among adsorption sites are rare events and
the vibrational dynamics is practically the only process. Then τ−1

2 ∼ γ /2; see equation (20).
At low temperature, we also have that ω2 ∼ ω1, equation (21). The δ phase should be fitted at
every temperature.

In figure 4 we show the numerical velocity autocorrelation for the Na/Cu(110) system
at two different temperatures: T = 50 K (dotted curve) and T = 150 K (solid curve). The
T-peak shift as well as the faster decay (smaller correlation time) with temperature due to
the enhancement of the diffusion process is apparent. The best fit to the analytical ansatz
equation (25) at T = 150 K is plotted as a dashed curve, showing very good agreement. The
parameters taken from the fitting are ω2 = 2.13 × 10−4 au and τ−1

2 = 2.21 × 10−5 au. This
last value compares well with the friction coefficient γ = 0.1ω0 = 2.2 × 10−5 au, showing
that a decay of the overall correlation function as a free particle model is a good approximation
for this temperature.

Now if equation (25) is included in equation (2) (Gaussian approximation) and the
integration is carried out analytically, the intermediate scattering function can be written as

I (K, t) = exp [−χ2 f (ω2, t)]e−χ2 A1−χ2 A2 t
∞∑

n,m

(−1)n(−1)m

n!m!
χ2(n+m)An

3 Am
4

× e−i(m−n)δe−(m+n)t/τ2 e−i(m−n)ω2 t (26)
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where χ is given by equation (7) with τc replaced by τ2 (at high temperatures the two values
practically agree), and the function f (ω2, t) is defined as

f (ω2, t) = A1 + A2t + A3eiδe−(τ−1
2 −iω2)t + A4e−iδe−(τ−1

2 +iω2)t (27)

where the coefficients are expressed as

A1 = τ−2
2 [2τ−1

2 ω2 sin δ + (ω2
2 − τ−2

2 ) cos δ]

(τ−2
2 + ω2

2)
2

, (28)

A2 = τ−2
2 (τ−1

2 cos δ − ω2 sin δ)

τ−2
2 + ω2

2

, (29)

A3 = 1

2τ 2
2 (τ

−1
2 − iω2)2

(30)

and

A4 = 1

2τ 2
2 (τ

−1
2 + iω2)2

. (31)

Finally, the dynamic structure factor gives

S(K, ω) = e−χ2 A1

π

∞∑
n,m=0

(−1)n+mχ2(n+m)An
3 Am

4

n!m!
e−i(m−n)δ

× [χ2 A2 + (n + m)τ−1
2 ]

[ω − (n − m)ω2]2 + [χ2 A2 + (n + m)τ−1
2 ]2

. (32)

We have now a double sum over Lorentzian shapes. The Q-peak results from the terms m = n
and the T-peaks come from the different combinations of the n and m indices corresponding to
the creation and annihilation processes of the T-mode. But again, depending on the χ values,
such sums can globally contribute to the two extreme cases, going from a pure Gaussian
function to a Lorentzian shape or, even, to intermediate shapes. From equation (32), one can
clearly see the contributions of the T-mode to the Q-peak and vice versa. Contrary to what is
sometimes stated in the literature, the total lineshape is not a simple sum of two contributions.

In figure 5 we plot the numerical dynamic structure factor for the Na/Cu(100) system at
T = 150 K (circles) compared with the analytical prediction equation (32) for K = 0.11 Å−1.
We have observed that for the range of K values inside the interval [0, 0.88] Å−1, the Gaussian
approximation is valid, that is, equation (32) reproduces very well the lineshapes of the
Q- and T-peaks. At larger wavevector transfers (see the inset in figure 5), an appreciable
overlapping between the two peaks is apparent and also the Gaussian approximation fails for
the quasielastic peak. However, the analytical lineshape remains a very good approximation
for the T-mode. This is due to the dispersionless nature of this mode. We remark that the
Gaussian approximation for vibrations is accurate not only for all K values, but also for a wide
range of temperatures [19].

At this point of the discussion, we examine to what extent equation (32) could be used as
a working formula to determine, for the whole first Brillouin zone, what shape (Gaussian-like
or Lorentzian-like) displays the Q-peak in a numerical calculation or in an experiment. This
is an important issue due to the fact that many times in the deconvolution procedure the shape
is assumed in advance. Since equation (32) is obtained with the Gaussian approximation, the
corresponding χ value extracted from a fitting procedure will not be in general the same as
the nominal one defined by equation (7), once τc is replaced by τ2. In figure 6 we plot the χ
value versus the wavevector transfer extracted from the fitting of equation (32) to the numerical
simulations at T = 150 K. In the inset,we show the quality of the fitting at K = 1.23 Å−1 (black
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Figure 5. The numerical dynamic structure factor for the Na/Cu(100) system (circles) at T = 150 K
and K = 0.11 Å−1. Solid line: analytical prediction, (32). In the inset we show an enlargement
of the T-peak region at a different value of the wavevector transfer, K = 0.88 Å−1, at the same
temperature.

point) once the T-peak is multiplied by a constant factor (in fact, the A3 and A4 coefficients in
equation (27)). The information we obtain from this analysis is the shape of the Q-peak. At
very low and high K values the Q-peak approaches a Lorentzian function, and at intermediate
values a mixed structure is predicted since χ ∼ 1. We would like to mention that the effective
Lorentzian shape assumed in the deconvolution procedure in [2–4] at high wavevector transfer
values is, in our opinion, a weakness of the working method employed there.

5. Inelastic focusing

In recent years, several focusing effects have been reported in inelastic atom–surface scattering.
Most such singularities are due to the divergence of the Jacobian (or density of states) of the
incident wavevector with respect to the final scattering angle leading to a unified theoretical
scheme for their treatments [25]. In particular, a new scattering singularity called the inelastic
focusing (IF) effect [24] has also been reported. The IF occurs under special conditions in which
the small spread of energies in the incident beam is sharply focused into a very narrow range
of final angles. The corresponding mathematical condition is also valid for the bunching of the
scan curves (curves in the dispersion plane expressing the energy and momentum conservation
laws) compatible with the incident parameters (angles and wavevectors) present in the incident
beam and around the same value of phonon energy and momentum exchange.

Due to the fact that the origin of most inelastic features can be understood from kinematics,
the following in-plane (sagittal) kinematic equations can be taken as the starting point of our
theoretical development (square wavevector quantities will be given in energy units in this
subsection with h̄2/2m = 1, m being here the mass of the incident particles): diffraction
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Figure 6. χ in equation (26) as a function of the wavevector transfer K, obtained from a procedure
of fitting to the numerical lineshapes at T = 150 K. In the inset, the quality of the fitting is shown
for K = 1.23 Å−1 (black point).

condition:

K = kf sin θf − ki sin θi; (33)

energy transfer:

h̄ω = k2
f − k2

i ; (34)

scan curve (SC):

sin θf = ki sin θi + K√
k2

i + h̄ω
, (35)

defined in the (h̄ω,K) dispersion plane and where kf and ki are the incident and final
wavevectors of the incoming particles.

The total in-plane scattering intensity observed experimentally in angular distributions,
when a spread of incident energies and angles is present in the incident beam, can be expressed
in general in terms of integrals over the incident space and the angular acceptance of the
detector of the total differential reflection coefficient, written as [24]

dR(kf ,ki)

dEf dθf
= dR(kf ,ki)

dEf dki

dki

dθf
. (36)

The IF singularity occurs when the density of states of ki in the final angular region becomes
very large—in other words, when the factor (dθf/dki)SC taken along the scan curve is equal to
zero. The kinematic condition for such a singularity or bunching of SCs can be finally written
as

ki

sin θi
= kf

sin θf
= h̄ω

K
. (37)
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Figure 7. The dispersion plane showing: as a solid line, the longitudinal resonance phonon of the
clean substrate Cu(001) along the [100] azimuth; as open circles, the dispersionless T-mode in the
creation and annihilation regions; and, as dashed lines, a bunching of scan curves (SC) covering
the incident wavevectors between 6.5 and 7.5 Å−1 fulfilling the inelastic focusing condition.

Moreover, the IF locus or parametric curve in the dispersion plane depending on ki and keeping
the final and incident angles constant, expressed as

h̄ω = k2
i

sin2 θf − sin2 θi

sin2 θi
,

K = ki
sin2 θf − sin2 θi

sin θi
,

(38)

can be shown to be tangent to the bunching of SCs at the same point. The observation of the IF
effect requires that the point of tangency corresponds to some excitation (preferably a surface
one). In general, the region of concatenation between the IF locus and the bunching of SCs is
quite extended and the focusing condition is fulfilled for a wide range of ki values [24]. Thus,
the IF peaks are easy to recognize in angular distributions since they are also placed at constant
angular positions for those ki values.

As stated above, at low adsorbate concentrations, the corresponding vibrational modes are
in a first approximation considered dispersionless. It is always possible to select a set of SCs
fulfilling the IF condition for a given h̄ω and K of the dispersionless T-mode. What should
be observed is a very sharp peak in time-of-flight spectra converted to an energy transfer scale
and therefore possible interference with the quasielastic peak would be drastically reduced—in
particular, for higher surface temperatures. Due to the fact that the IF condition can be chosen
at will, we could also choose smaller wavevector transfer to sample large distance correlations
of adsorbates and control, in a way, the jumping mechanism. Moreover, due to the fact that the
entire narrow energy distribution of the incident beam is focused at a single point, the energy
resolution of the incident beam does not affect the width of an observable IF feature. As a
consequence, as stated for the phonon modes, the natural lifetime of the T-mode will be better
estimated eventually without convolution techniques. As an illustration, in figure 7 we display
in the dispersion plane the longitudinal resonance (LR) phonon (solid curve) for the clean
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Cu(001) substrate along the [100] azimuth, the dotted lines representing the fundamental
frequency of the T-mode (5.8 meV) in the creation and annihilation regions, as well as the
bunching of scan curves (dashed lines) crossing the T-mode at a given momentum transfer
value, K = 1.08 Å−1, and incident angle of 40◦, covering an interval of incident wavevectors
between 6.5 and 7.5 Å−1. The bunching condition is around the incident wavevector of
7.14 Å−1, after equation (37). It is expected then to have a very sharp T-peak since a bunching
of SCs contributes to the lineshape and, if the K value is high enough, the diffusion process
will not affect the damped vibrational motion. As has been shown elsewhere, any point of
the dispersion plane can be easily attained and, therefore, we can control what elementary
process we would like to enhance. For example, a triple intersection of curves (T-mode, LR or
RW-mode and SCs) can be forced to permit observation of the T-motion assisted by a surface
phonon.

6. Conclusions

In this paper we have presented a unified view of diffusional and vibrational motions of
adsorbates on surfaces probed in QHAS experiments within a stochastic theoretical framework.
We have mainly discussed the Gaussian approximations to the intermediate scattering function
for both cases and the lineshapes emerging from theory. A motional narrowing effect can be
observed under certain circumstances in the Q-peak as a result of the extension of the theory.
For vibration, a motional narrowing effect with increasing temperature (peak profile better
approximated by a Gaussian shape) is clearly visible in the Na/Cu(100) system investigated
here. We have also proposed a simple analytical model to explain the coupling between
diffusion and vibration and showed that, apart from purely diffusive processes, creation and
annihilation events whose net energy change is zero also contribute to the shape of the Q-peak.
In order to enhance the response of the system and control the optimal conditions to observe
diffusion and vibration separately, we have postulated an inelastic focusing effect similar to
the one found in other contexts.
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